

POSTOPERATIVE OUTCOMES IN VASCULAR SURGERY PATIENTS UNDERGOING AMPUTATION

LEAH GOBER, KYLA BENNETT, JOHN RECTENWALD

VASCULAR REGIONAL MEETING

OCTOBER 20, 2023

Quality Fellowship in Training (FIT) Program

- Designed to introduce residents and fellows in vascular programs to the VQI through the SVS Patient Safety Organization (PSO)
- Uses a mentor-directed approach with the goal to review comparative data including center level quality improvement processes
- Opportunities include engagement in quality charter development, QI research initiatives using VQI data, exposure to the VQI research advisory committee (RAC) and a comprehensive lecture series
 - Project Design, Submitting to RAC Regional vs National, Data Analysis, Paper Writing, Paper Review, Navigating the IRB, Managing a Multi-Center Consortium, Designing a Randomized Trial

FIT Mentor and Trainee

FIT Mentor

- Active VQI member with familiarity with the Quality Improvement
- Agrees to a minimum of quarterly meetings with the Trainee
- Encourages FIT participation in Regional Meetings
- Review and approve project design and plan
- Review and facilitate RAC proposal
- Interpretation of project results
- Review and approve any abstract, presentation or publication
- FIT Trainee
 - Resident/fellow (any year)
 - Specialties: General Surgery, Vascular Surgery, Vascular Medicine, Cardiology

Original Research Question

In patient's with prior bypass procedures who then undergo amputation, does graft remnant lead to higher rates of postoperative complications?

Rubin, 1988:

- 75 nonfunctional prosthetic bypass grafts, partial excision vs infrainguinal graft removal at time of lower extremity amputation
- Partial excision group: delayed wound healing (47% vs 8%) and stump infection (39% vs 78%)

Mertens, 1995:

- Included infrainguinal arterial prosthetic graft infections, sorted into incomplete vs complete excision
- 82% of the incomplete excision group required subsequent operations for continued sepsis (vs 13% complete excision group)

Research Question

Altered question, due to limited data regarding graft remnant in VQI:

Does the presence of a prior bypass graft increase the chances of post-operative complication in a patient undergoing amputation?

Data Inclusion / Exclusion

Inclusion Criteria: All ages, hip disarticulations, AKA, TKA, BKA; indications included tissue loss, nonhealing wounds

Exclusion Criteria: Amputations below the ankle (toe amputation, TMA, disarticulations); indications including infection and diabetic neuropathy

Data Selection

Surgical Outcomes

	Bypass (n = 3796)	No Bypass (n = 5335)	p-value	
Post-operative Complication (%)	15.6 (n = 592)	16.9 (n = 901)	0.1	
Surgical Site Infection (%)	1.1 (n = 42)	0.56 (n = 30)	0.005	
Return to OR (%)	7.38 (n = 280)	7.4 (n = 395)	0.99	

Medical Outcomes

	Bypass (n = 3796)	No Bypass (n = 5335)	p-value
MI (%)	1.84 (n = 70)	1.99 (n = 106)	0.68
Dysrhythmia (%)	2.66 (n = 101)	3.84 (n = 205)	0.002
Congestive Heart Failure (%)	sestive Heart ailure (%) 1.26 (n = 48) 1.56 (n = 8		0.28
Respiratory (%)	1.26 (n = 48)	1.35 (n = 72)	0.79
Renal (%)	3.58 (n = 136)	3.43 (n = 183)	0.74

Initial Conclusions

- Post-operative complication is higher in patients without prior bypass, but without statistical significance
 - Higher dysrhythmia (3.5 vs 2.8%)
- Surgical site infection is higher in patients with prior bypass surgeries (1.1 vs 0.5%)
- What happens if we remove patients with suprainguinal bypasses, leaving only infrainguinal bypasses behind?

Data Selection, Refined

Data Selection, Refined

Surgical Outcomes

	Infrainguinal Bypass (n = 3128)	No Bypass (n = 5335)	p-value	
Post-operative Complication (%)	15.2 (n = 476)	16.9 (n = 901)	0.047	
Surgical Site Infection (%)	1.27 (n = 40)	0.56 (n = 30)	0.0007	
RTOR (%)	7 (n = 219)	7.4 (n = 395)	0.51	

Medical Outcomes

	Infrainguinal Bypass (n = 3128)	No Bypass (n = 5335) p-value	
MI (%)	2.17 (n = 68)	1.99 (n = 106)	0.61
Dysrhythmia (%)	2.74 (n = 86)	3.84 (n = 205)	0.009
CHF (%)	1.2 (n = 38)	1.56 (n = 83)	0.23
Respiratory Complication (%)	1.2 (n = 38)	1.35 (n = 72)	0.66
Renal (%)	3.4 (n = 107)	3.43 (n = 183)	0.96

Initial Conclusions, Refined

- Post-operative complication is higher in patients without prior bypass (16.9 vs 15.2%)
 - Higher dysrhythmia (3.8 vs 2.7%)
 - If we remove dysrhythmias, POC is equivalent
- Surgical site infection is higher in patients with prior bypass surgeries (1.3 vs 0.5%)
- What if we match the patients IDs from the amputation dataset to the patient IDs from the bypass dataset to extract graft type?
- How does this data change over time, using the long-term follow up dataset?

Matching Amputation and Graft Databases

3128 IDs (Amputation Database) + 75831 IDs (Bypass Database)

Matched IDs, Removed duplicates, Matched laterality, Compared dates

837 Vein Grafts, 798 Non-autologous Grafts

No differences were noted between non-autologous conduit and vein conduit

	Non-autologous Conduit (n = 798)	Vein Conduit (n = 837)	p-value
Post-op Complication (%)	15 (n = 120)	12.8 (n = 107)	p = 0.21
Surgical Site Infection (%)	2 (n = 16)	1.2 (n = 10)	p = 0.26
Return to the OR (%)	7.1 (n = 57)	6.6 (n = 55)	p = 0.72

How does this data change over time, using the long-term follow up dataset?

LTF Data Selection

Long-term data shows an increase in infection **and** revision for patients with a prior bypass

Indication For Revision

		Bypass (n = 2694) n = 314*	No Bypass (n = 4686) n = 346*	p-value
Indication for Revision	Non-healing (%)	56 (n = 177)	62 (n = 216)	0.0018
	Infection (%)	26 (n = 84)	26 (n = 90)	0.9
	Progression of Disease (%)	16.8 (n = 53)	11.5 (n = 40)	0.064

Patients with prior bypasses are more likely to be ambulatory at long-term follow-up and..

Patients with prior bypasses are more likely to be ambulatory at long-term follow-up and.. they are more likely to be using a prosthetic

More prior bypass patients are discharged to an acute rehab or nursing facility after undergoing lower extremity amputation

Limitations

- Patient population is limited to available VQI data
- Limited specialty data
 - No orthopedic contribution to amputation population, possibly skewing toward sicker overall population in VQI
- Limited intraoperative procedural data
 - Bypass patency and removal

Conclusions

Procedural:

Post-operative complication is higher in amputees without prior bypass, namely cardiac dysrhythmias Surgical site infection is higher in amputees with prior bypass surgeries

LTF:

Patients with prior bypass grafts were more likely to use a prosthetic and be ambulatory at LTF, despite a higher rate of long-term infection and revision

Ongoing work / future studies:

Revisit original question with institutional operative reports

QUESTIONS

