Vascular Quality Registry Papers of Note

SEVSG Meeting
April 28, 2017
Emily Spangler
Risk Factor Optimization and Guideline-Directed Medical Therapy in US Veterans With Peripheral Arterial and Ischemic Cerebrovascular Disease Compared to Veterans With Coronary Heart Disease

Ravi S. Hira, MDa,\#, Jennifer B. Cowart, MDb,c, Julia M. Akeroyd, MPHd, David J. Ramsey, PhDe, Yashashwi Pokharel, MDf, Vijay Nambi, MD, PhDb,c,g,h, Hani Jneid, MDb,c, Anita Deswal, MD, MPHb,c, Ali Denktas, MDb,c, Addison Taylor, MDb,c, Khurram Nasir, MDi, Christie M. Ballantyne, MDc,g,h, Laura A. Petersen, MD, MPHb,c,d,e, and Salim S. Virani, MD, PhDb,c,d,e

(Am J Cardio 2016;118:1144–1149)
Patients with PAD or ischemic cerebrovascular disease (ICVD) less likely to receive antiplatelet therapy, statin or optimal BP control than those with coronary heart disease (CHD)
Aim

- Study the receipt of guideline-directed medical therapy and risk factor optimization in patients with:
 - PAD alone
 - ICVD alone
 - Concomitant PAD and ICVD

in comparison to patients with CHD in the VA system
Methods - Cohort

- Patients with PCP visit in the VA from 10/1/13-9/30/14 identified via VA data warehouse with a diagnosis of cardiovascular disease by ICD-9 code (CHD, PAD or ICVD)

- Grouped into:
 - PAD alone
 - ICVD alone
 - Concomitant PAD and ICVD
 - CHD (alone and/or with PAD or ICVD)
Methods – Data Sources

- Demographics, lab data and vital signs assessed

- Statin and antiplatelet use: VA pharmacy data assessed for a prescription within 100 days before or 14 days after index visit. Non-VA medication fields assessed for ASA outside of the VA.

- Patients receiving concomitant anticoagulation were excluded from antiplatelet analysis
OMT = composite of 4 measures assessed:

- HTN control (BP<140/90 mmHg)
- Glycemic control (A1c <7.0% among diabetics)
- Use of statin therapy
- Use of antiplatelet therapy
Methods - Analysis

- Assessment of the frequency of OMT and each individual measure in the 4 patient groups
- Multivariate hierarchical logistic regression across the 4 patient groups
 - Covaraitates of age, gender, race (white vs non), hx of HTN, receipt of care at a teaching vs nonteaching facility, patient assignment to a physician vs nonphysician PCP, number of PCP visits in year prior, provider panel size.
Results - Cohort

All patients with CVD\(^a\) diagnoses in the VA\(^b\) system = 1,266,541

Patients excluded due to hospice or metastatic cancer status: 24,526

All patients included in study: 1,242,015

Patients with CHD\(^c\): 989,380
Patients with PAD\(^d\): 70,404
Patients with ICVD\(^e\): 163,730
Patients with PAD + ICVD: 18,501

a. CVD — Cardiovascular disease
b. VA — Veterans Affairs
c. CHD — Coronary Heart Disease
d. PAD — Peripheral arterial disease
e. ICVD — Ischemic cerebrovascular disease

Figure 1. Cohort development.
Table 1
Comparison of baseline characteristics of patients with coronary heart disease (CHD), peripheral arterial disease (PAD) alone, ischemic cerebrovascular disease (ICVD) alone, and PAD + ICVD

<table>
<thead>
<tr>
<th>Variable</th>
<th>CHD (n = 989,380)</th>
<th>PAD (n = 70,404)</th>
<th>ICVD (n = 163,730)</th>
<th>PAD + ICVD (n = 18,501)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years, mean/SD)</td>
<td>72.3 ± 10.5</td>
<td>70.3 ± 10.6</td>
<td>70.4 ± 11.6</td>
<td>72.2 ± 9.8</td>
<td><0.0001</td>
</tr>
<tr>
<td>Men</td>
<td>973403 (98.4%)</td>
<td>68824 (97.8%)</td>
<td>156513 (95.6%)</td>
<td>18079 (97.7%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>White</td>
<td>772830 (78.1%)</td>
<td>51257 (72.8%)</td>
<td>116199 (71.0%)</td>
<td>14213 (76.8%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Black</td>
<td>96543 (9.8%)</td>
<td>11422 (16.2%)</td>
<td>28735 (17.6%)</td>
<td>2616 (14.1%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Other</td>
<td>22328 (2.3%)</td>
<td>1454 (2.1%)</td>
<td>3934 (2.4%)</td>
<td>355 (1.9%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Unknown</td>
<td>97679 (9.9%)</td>
<td>6271 (8.9%)</td>
<td>14862 (9.1%)</td>
<td>1317 (7.1%)</td>
<td>0.002</td>
</tr>
<tr>
<td>Diagnostic cost group RRS, mean ± SD</td>
<td>1.91 ± 2.96</td>
<td>1.96 ± 2.83</td>
<td>1.95 ± 2.72</td>
<td>2.46 ± 3.39</td>
<td><0.0001</td>
</tr>
<tr>
<td>Receiving care from a physician provider</td>
<td>746596 (75.5%)</td>
<td>52811 (75.0%)</td>
<td>123778 (75.6%)</td>
<td>14036 (75.9%)</td>
<td>0.099</td>
</tr>
<tr>
<td>Receiving care at a teaching facility</td>
<td>387403 (39.2%)</td>
<td>28531 (40.5%)</td>
<td>69475 (42.4%)</td>
<td>8083 (43.7%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Number of PCP visits in 12 months prior to the index primary care visit, mean ± SD</td>
<td>4.68 ± 5.23</td>
<td>4.82 ± 5.06</td>
<td>4.82 ± 5.06</td>
<td>5.48 ± 5.39</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>461465 (46.6%)</td>
<td>31165 (44.3%)</td>
<td>60913 (37.2%)</td>
<td>8226 (44.5%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>812939 (82.2%)</td>
<td>57533 (81.7%)</td>
<td>133983 (81.8%)</td>
<td>16479 (89.1%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Index LDL-C (mg/dL), mean ± SD</td>
<td>84.7 ± 31.9</td>
<td>92.4 ± 32.9</td>
<td>92.6 ± 32.9</td>
<td>88.9 ± 32.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>Index LDL-C < 100 mg/dL</td>
<td>633549 (74.9%)</td>
<td>39151 (64.6%)</td>
<td>89086 (64.5%)</td>
<td>11183 (69.4%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Receiving non-statin lipid lowering agent</td>
<td>109211 (11.0%)</td>
<td>5311 (7.5%)</td>
<td>10786 (6.6%)</td>
<td>1578 (8.5%)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

CHD = coronary heart disease; ICVD = ischemic cerebrovascular disease; LDL = low density lipoprotein; PAD = peripheral arterial disease; PCP = primary care provider; RRS = relative risk score; SD = standard deviation.
Results – unadjusted receipt of OMT

Table 2
Frequency of receipt of optimal medical therapy and risk factor control

<table>
<thead>
<tr>
<th>Measure</th>
<th>CHD (n = 989,380)*</th>
<th>PAD Alone (n = 70,404)</th>
<th>ICVD Alone (n = 163,730)</th>
<th>PAD + ICVD (n = 18,501)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP <140/90 mm Hg</td>
<td>79.8%</td>
<td>75.6%</td>
<td>76.5%</td>
<td>73.5%</td>
<td>0.07</td>
</tr>
<tr>
<td>Statin use</td>
<td>71.5%</td>
<td>59.1%</td>
<td>62.3%</td>
<td>73.3%</td>
<td><0.0001</td>
</tr>
<tr>
<td>A1c < 7.0% among diabetics</td>
<td>50%</td>
<td>49.4%</td>
<td>54.4%</td>
<td>53.1%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Antiplatelet use</td>
<td>84.4%</td>
<td>66.0%</td>
<td>75.5%</td>
<td>84.6%</td>
<td>0.04</td>
</tr>
<tr>
<td>Composite (optimal medical therapy+)</td>
<td>37.5%</td>
<td>24.4%</td>
<td>31.5%</td>
<td>37.0%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

BP = blood pressure; CHD = coronary heart disease; ICVD = ischemic cerebrovascular disease; PAD = peripheral arterial disease.

* Patient with PAD or ICVD or PAD + ICVD with concomitant CHD included in the CHD category.

† Composite of hypertension control (BP <140/90 mm Hg), statin use, antiplatelet use, and diabetes control (A1c <7.0%) in diabetics.
Results – Odds of receipt of OMT

Table 3
Comparison of risk factor control and optimal medical therapy among patients with PAD alone, ICVD alone, and PAD + ICVD adjusting for covariates and clustering at the facility-level using CHD as referent category

<table>
<thead>
<tr>
<th>Outcome</th>
<th>CHD (n = 989,380)*</th>
<th>PAD Alone (n = 70,404)</th>
<th>ICVD Alone (n = 163,730)</th>
<th>PAD + ICVD (n = 18,501)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ref</td>
<td>Unadjusted OR (95% CI)</td>
<td>Adjusted OR (95% CI)†</td>
<td>Unadjusted OR (95% CI)</td>
</tr>
<tr>
<td>BP <140/90 mm Hg</td>
<td>Ref</td>
<td>0.77 (0.75-0.78)</td>
<td>0.78 (0.76-0.79)</td>
<td>0.81 (0.80-0.82)</td>
</tr>
<tr>
<td>Statin use</td>
<td>Ref</td>
<td>0.65 (0.64-0.66)</td>
<td>0.53 (0.53-0.54)</td>
<td>0.69 (0.68-0.70)</td>
</tr>
<tr>
<td>A1c <7.0 among diabetics</td>
<td>Ref</td>
<td>1.08 (1.06-1.10)</td>
<td>1.00 (0.98-1.03)</td>
<td>1.40 (1.38-1.42)</td>
</tr>
<tr>
<td>Antiplatelet use</td>
<td>Ref</td>
<td>0.36 (0.35-0.36)</td>
<td>0.34 (0.34-0.35)</td>
<td>0.57 (0.56-0.57)</td>
</tr>
<tr>
<td>Composite (optimal medical therapy)†</td>
<td>Ref</td>
<td>0.54 (0.53-0.55)</td>
<td>0.54 (0.53-0.55)</td>
<td>0.76 (0.76-0.77)</td>
</tr>
</tbody>
</table>

BP = blood pressure; CHD = coronary heart disease; ICVD = ischemic cerebrovascular disease; OR = odds ratio; PAD = peripheral arterial disease.

* Patient with PAD or ICVD or PAD + ICVD with concomitant CHD were included in the CHD category.
† Adjusted for age, gender, race (whites vs others), a history of hypertension, diagnostic cost group relative risk score (continuous) of patients, teaching versus nonteaching facility, physician versus nonphysician provider, number of PCP visits 1 year before, provider panel size and clustering at the level of the facility. For BP <140/90 mm Hg, results were also adjusted for proportion of days covered with antihypertensive medication. Analyses were further adjusted for clustering of patients at the facility level.
‡ Composite of hypertension control (BP <140/90 mm Hg), statin use, antiplatelet use, and diabetes control (A1c <7.0% in diabetics).
Comparison to other registries:

- National Cardiovascular Data Registry (NCDR) – PAD patients with antiplatelet use >80%
 - But 85% of those patients had concomitant CHD
- Danish registry – Patients with PAD alone 50% less likely to receive ASA or statin therapy compared with patients with CHD alone.
- Similar results from PARTNERS program and REACH registry
Discussion

- Previous reports have demonstrated deficiencies in physician knowledge and treatment of PAD as well as difference in treatment between PCPs, cardiologists, and vascular surgeons.

- Patients may associate CHD with higher likelihood of poor outcomes compared with PAD or ICVD.
Limitations

- Observational study and cannot account for residual confounding
- Patterns of primary care could be different outside the VA system
- Measures or smoking cessation could not be reliably ascertained from the data set
- Medication affordability was not evaluated and could affect medication adherence and risk factor control
- Some patients may receive PCP/medications outside of VA (but this should not have impacted between group comparisons)
- Inpatient ICD-9 codes used to identify some patients with CHD and inpatient treatment may have affected OMT and risk factor control in these patients
- Discontinuation of therapy by patients could not be ascertained from data set.
Proposed ways to improve

- Academic detailing
- Patient education