Regional Variation in Postoperative Myocardial Infarction After Major Vascular Surgery Operations in the Vascular Quality Initiative

Salvatore T. Scali, MD, FACS
Assistant Professor of Surgery
University of Florida
Disclosures

None
Introduction

- ~230 x10^6 non-cardiac operations/year

- >1.5 x10^6 vascular operations/year in the U.S.

- MI incidence 8% among inpatients > 45 years
 - ~10 million postoperative MIs (POMI)/year

- Nearly all non-ST segment elevation MI
 - 50-90% associated with plaque rupture
 - Remaining causes associated with DO_2/VO_2

Poldermans et. al. NEJM 353(4):412-414
Auerbach. AHRQ. http://www.ahrq.gov/clinic/ptsafety/chap25.htm
POMI Presentation and Mortality Impact

- Most MIs only detected by troponin
 - Only 15% report chest pain
 - 65% are asymptomatic
- Mortality is identical after apparent and silent MIs
 - It’s not just “troponinitis”
- Mortality is 10% at 30-days
 - 2-fold greater than non-operative MIs

VISION: Devereaux JAMA 2012
Botto, Anesthesiology 2014
Impact of Postoperative MI

Table 4. Association of Postoperative Troponin and 30-Day Mortality After Multiple Imputation of Missing Troponin Values and Adjusted for Age, Sex, Emergency Surgery, and Preoperative Renal Failure

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted Analysis</th>
<th>Adjusted Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RR</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>Age (per year increase)</td>
<td>1.05 (1.02–1.07)</td>
<td><0.01</td>
</tr>
<tr>
<td>Female sex</td>
<td>1.02 (0.65–1.58)</td>
<td>0.94</td>
</tr>
<tr>
<td>Emergency surgery</td>
<td>6.87 (4.34–10.9)</td>
<td><0.01</td>
</tr>
<tr>
<td>Renal failure (preoperative)</td>
<td>2.63 (1.58–4.38)</td>
<td><0.01</td>
</tr>
<tr>
<td>Troponin elevation, categorical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troponin ≤0.06 µg/L</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Troponin 0.07–0.59 µg/L</td>
<td>2.98 (1.66–5.34)</td>
<td><0.01</td>
</tr>
<tr>
<td>Troponin ≥0.60 µg/L</td>
<td>7.94 (4.07–15.5)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; and RR, relative risk.
Troponin Predicts Mortality

“Prognosis define diagnosis”

Even slight troponin elevations predict death
• Population attributable risk = 34%

<table>
<thead>
<tr>
<th>Peak Troponin (ng/mL)</th>
<th>30-day Mortality</th>
<th>Time to Death</th>
</tr>
</thead>
<tbody>
<tr>
<td><.01</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>0.02</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>0.03-0.29</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>≥0.3</td>
<td>17</td>
<td>6</td>
</tr>
</tbody>
</table>
Can we prevent POMI?

- MAP < 55 mmHg: 1.5-fold increased risk of AKI, 1.8 for POMI\(^1\)
- POISE-2 Trial: Aspirin + Clonidine\(^2\)
 - no reduced risk for postoperative MI\(^*\)
 - increased risk of major bleeding
 - increased risk of clinically important hypotension
 *Vascular operations \(~\)6% of patients
- ENIGMA-2 Trial: N\(_2\)O removal didn’t result in reduced risk of POMI\(^3\)
- Methylprednisolone in high cardiac risk surgery to reduce SIRS response→ increased risk 20%!\(^4\)

\(^1\)Walsh, Anesthesiology 2013; \(^2\)Myles, Lancet, 2014
\(^3\)Devereaux, NEJM (2 papers) 2013, 2014; \(^4\)Whitlock, Lancet, 2015
“Most patients who have a perioperative MI will not experience ischemic symptoms. Nevertheless, asymptomatic perioperative MI is as strongly associated with 30-day mortality as symptomatic MI. **Routine monitoring of cardiac biomarkers in high-risk patients...after major surgery is therefore recommended.**”
• **ACC 2007 Consensus Criteria Definition for AMI**
 any of the following → Troponin I or T > 99th centile of upper reference limit + evidence of ischemia including: symptoms, ECG changes (new ST-T changes or new LBBB), new Q waves, and/or imaging demonstrating new WMA or loss of viable myocardium
VQI Definition of Postoperative MI

- Troponin only
- EKG or clinical - ECG changes or clinical evidence of MI in conjunction with any abnormality of cardiac biomarker consistent with infarction (CKMB or Troponin)
Variation in POMI

• Most reports focus on risk assessment, medical optimization, & role of preoperative coronary revascularization

• Regional variability exists in management and outcome of AMI
 - differences in medical management
 - differences in rate and type of coronary revascularization

• Little known about regional variation in POMI

McFarley et al. NEJM. 351(4):312-317
Auerbach. AHRQ. http://www.ahrq.gov/clinic/ptsafety/chap25.htm
POMI Regional Variation in VQI Patients

• Methods
 → Examine POMI, 18 regional VQI groups, 223 centers, 1297 surgeons, 73,608 non-emergent vascular operations: 2010-2014

 - CEA, n = 38,504
 - Infrainguinal bypass, n = 16,867
 - Endovascular AAA repair, n = 14,738
 - Open AAA repair, n = 3,499

• Logistic regression performed for risk adjustment
Regional Variation in POMI by Procedure

All displayed data is risk adjusted

Regional variability in POMI rates; 3 regions excluded due to < 100 cases
Red indicates troponin only POMI; blue indicates clinical POMI
Regional Variation in POMI after OAAA

OAAA POMI Rate by Region

[Bar chart showing regional variation in POMI rate after OAAA]
What can we do about POMI Regional Variation?

- Better risk stratification?
- Educate VQI centers [e.g. COPI reports]?
- Pharmacologic intervention? [e.g. preoperative high intensity statins]
- Screening?
- Follow-up and long-term management of patients w/ POMI?
Prediction of POMI

<table>
<thead>
<tr>
<th>Variable</th>
<th># times selected</th>
<th>Cumulative AUC</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 60</td>
<td>100</td>
<td>.57</td>
<td>2.1 (1.5-2.9)</td>
</tr>
<tr>
<td>Any prior vascular surgery</td>
<td>100</td>
<td>.62</td>
<td>1.8 (1.5-2.2)</td>
</tr>
<tr>
<td>CAD, unstable angina or MI prior 6 months</td>
<td>100</td>
<td>.65</td>
<td>2.1 (1.4-3.2)</td>
</tr>
<tr>
<td>IDDM</td>
<td>100</td>
<td>.67</td>
<td>1.6 (1.3-1.9)</td>
</tr>
<tr>
<td>Procedure type</td>
<td>100</td>
<td>.73</td>
<td>2.2 (1.8-2.7)</td>
</tr>
<tr>
<td>Preop Cr > 1.78 mg/dL</td>
<td>99</td>
<td>.74</td>
<td>2.0 (1.6-2.7)</td>
</tr>
<tr>
<td>Abnormal stress test</td>
<td>99</td>
<td>.74</td>
<td>1.8 (1.4-2.2)</td>
</tr>
<tr>
<td>BMI < 24</td>
<td>99</td>
<td>.75</td>
<td>1.4 (1.2-1.7)</td>
</tr>
<tr>
<td>CHF</td>
<td>94</td>
<td>.75</td>
<td>1.8 (1.4-2.3)</td>
</tr>
</tbody>
</table>
Estimated Risk of POMI by Risk Score

Risk of POMI

Integer Risk Score

Graph showing the estimated risk of POMI by risk score for different procedures:
- OAAA
- INFRA
- EVAR
- CEA
VQI Preoperative Cardiac Risk Index

Conclusions

- **MI after Vascular Surgery**
 - Common, most are ‘silent’ but all are potentially deadly

- **No safe ‘prophylaxis’ known**
 - Beta blockers work, but can cause strokes
 - Nitrous oxide has no effect
 - Aspirin: no clear benefit if not medium-high risk patients
 - Clonidine: no benefit and hypotension
 - Steroids: increase MI rate by 20%

- **Consider MAP > 55 mmHg**
Conclusions

- Significant regional variation exists in POMI rates following major vascular surgery

- Specific preoperative and postoperative characteristics, including region, are associated with troponin only POMI

- These findings may represent an opportunity for focused quality improvement efforts to study troponin screening after major vascular surgery
Variation in AMI